
PROBABILISTIC CONSTRUCTION AND
PROPERTIES OF GAMMA PROCESSES AND

EXTENSIONS

SOPHIE MERCIER

Université de Pau et des Pays de l’Adour
IPRA-LMAP, CNRS UMR 5142, 64013 Pau, France

sophie.mercier@univ-pau.fr

Keywords: Process with independent increments, Punctual Poisson pro-
cess, Overshoot.

The point of this talk is to make an overview of probabilistic properties of
gamma processes, and to present a few univariate and multivariate extensions.

In the oldest reliability literature, lifetimes of industrial systems or com-

ponents were usually modeled through random variables, e.g. see [3] for a

pioneer work on the subject. Based on the development of on-line monitor-

ing which allows for the effective measurement of a system deterioration,

numerous papers nowadays model the degradation in itself, which is of-

ten considered to be accumulating over time. In such a context, one can

find shock models, where the deterioration is suddenly increased at each

shock, in contrast to wear models, where the degradation level appears as

mostly continuous. Deterioration induced by isolated shocks is typically

modeled through compound Poisson or shot noise processes [19] whereas

the most classical wear models are Wiener process (with trend) [10,19,25]

and gamma process, the use of which seems to go back to the middle of the

80’s [1,8]. Inverse gaussian process also appeared as a possible model more

recently [24,26], as well as inverse gamma process, see [15,16]. This talk

is devoted to the seemingly most common model, that is gamma process

(and extensions). We refer to [23] for a comprehensive presentation and

overview of applications of the gamma process to reliability theory, and to

[17] for a deep account on its probabilistic construction and jump behavior

(together with statistical inference procedures).

Given an increasing and continuous function A : R+ −→ R+ such that

A (0) = 0 and b > 0, let us first recall that a càdlàg process X = (Xt)t≥0

on (Ω,A,P) is said to be a (non-homogeneous) gamma process with shape

function A(·) and scale parameter b (written X ∼ G(A(·), b)) if
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Figure 1. An observation of the jump times (Un) and jump sizes (Vn) of a gamma

process G(t, 1), restricted to the jumps with size greater than 10−10 (left) and zoomed

observation of the left plot, restricted to the jumps with size in [10−10, 0.05] (right)

• X0 = 0 almost surely,

• X has independent increments,

• for all 0 ≤ s < t, the random variable Xt−Xs is gamma distributed

G (A (t)−A (s) , b) with the following probability density function

with respect to Lebesgue measure:

f (x) =
bA(t)−A(s)

Γ (A (t)−A (s))
xA(t)−A(s)−1e−bx 1R+

(x) , for all x ∈ R.

In the specific case where A (t) = at with a > 0, the process X is said to

be a homogeneous gamma process. It that case, it is a Lévy process [5]. In

the most general case, it is an additive (or non homogeneous Lévy) process

[22].

As a first step, probabilistic constructions of a gamma process will be

reviewed through series representations of the shape

Xt =
∑
n≥1

Vn 1[0,t] (Un) ,

based on the works of Bondesson [6] and Rosiński [21]. These constructions

allow to give a good account of the jump structure of a gamma process

(Xt)t≥0, which can be seen to have an infinite activity [12], namely to jump

infinitely many on any finite time interval. This is illustrated in Figure 1,

where we can observe that there is an accumulation of jumps of small size.

Based on this, the gamma process is well adapted to model deterioration

that is accumulating over time as the result of many tiny increments [23].
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Figure 2. Overshoot of the gamma process

From an applicative point of view, a system with non-decreasing dete-

rioration (Xt)t≥0 is typically considered as failed (or too degraded) as soon

the deterioration level is beyond a given failure threshold (say h). The

time-to-failure of the system hence is the hitting time τh of the Borel set

[h,+∞) by the process (Xt)t≥0, with

τh = inf (t ≥ 0 : Xt ≥ h) .

Based on the monotony of a gamma process, it is immediate to get the

survival function of τh :

F̄τh (t) = P (τh > t) = P (Xt ≤ h) = FXt (h) ,

where FXt
is the cumulative distribution function of Xt.

However, contrary to what happens with a continuous process such as a

Wiener process, the level h is not exactly reached at time τh : it is crossed

by a jump, so that the level Xτh at time τh is a.s. larger than h, leading

to an a.s. positive overshoot (Xτh − h), see Figure 2. In an applicative

context, the failure may be all the more severe as the overshoot is higher,

which may entail safety problems. Whence the interest of studying the

after-jump level Xτh together with the jump time τh, as well as the size

of the jump Xτh − Xτ−
h

. Several results will be reviewed on these hitting

times, together with the before/after jump levels, based on results from [5].

Aging properties of τh will also be mentionned, which justify the use of

preventive maintenance actions for a gamma deteriorating process.

A few properties of a gamma process will next be pointed out, which

can be restrictive in an applicative context. Several extensions from the

literature will be reviewed, which allow to overcome such limitations. As



an example, the variance-to-mean ratio of a (standard) gamma process

is known to be constant over time. This has lead to the development of

Extended gamma process, as defined by [9], where the scale parameter

may vary over time. See [14] for a practical use in reliability in a discrete

time context, and [2] for approximate simulation methods and probabilistic

computations. This process is also called Weighted gamma process by [11]

(in a Bayesian context).

Based on the independence of its increments, another possible restriction

of the gamma process is that a deterioration increment Xt − Xs (with

0 < s < t) does not depend on the previous history of the process at time

s, whatever severe the deterioration could have been before s. A second

extension called Transformed gamma process was recently proposed by [13],

which overcomes this restriction.

A third extension called Pertubed gamma process is studied by [7],

which allows to model non strictly monotonous deterioration (but with

monotonous trend). This can, e.g., allow to deal with measurement errors.

Finally, the development of online monitoring often allows to measure

several deterioration indicators at the same time, see, e.g., [20] for a prac-

tical example for railway studies. Apart from the previously mentioned

univariate extensions, there hence is a crucial need for multivariate deteri-

oration model. A possibility is to consider multivariate (non homogeneous)

Lévy processes with gamma marginal processes. A few possible construc-

tions from the literature will be reviewed, such as, e.g., superposition or

subordination of independent gamma processes [4], or construction through

Lévy copulas [18], which allows for more flexibility in the dependence of the

marginal gamma processes.
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